Tetrahedron Letters 50 (2009) 2119-2120

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Radical additions to allyl bromides. A synthetically useful, 'Tin-Free' method for carbon-carbon bond formation

John A. Struss^{a,*}, Mitra Sadeghipour^b, James M. Tanko^c

^a Department of Chemistry and Physics, The University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606-1490, United States

^b Department of Chemistry, Frostburg State University, 101 Braddok Road, Frostburg, MD 21532, United States ^c Department of Chemistry, Virginia Tech, 107 Davidson Hall, Blacksburg, VA 24061-0001, United States

ARTICLE INFO

Article history: Received 10 December 2008 Revised 11 February 2009 Accepted 19 February 2009 Available online 25 February 2009

ABSTRACT

The scope and limitations of a novel free radical chain process involving the addition of benzyl radicals to substituted allyl bromides were examined and extended to explore the effect of α -substitution on the allyl bromide (R'), and the use of pyrrolidine amides and oxazolidinone as activating substituents (Z) as the first steps toward the development of a stereoselective, radical-based C-C bond-forming reaction which is environmentally benign.

© 2009 Elsevier Ltd. All rights reserved.

Benzyl and cumyl radicals readily add to various β-substituted allyl bromides **1** using peroxide initiators at elevated temperatures.¹ This reaction is unique because it does not rely on the use of toxic metals for free radical generation.² The reaction mechanism involves hydrogen abstraction by Br producing a benzylic radical (R), which subsequently adds to the allyl bromide. β-Elimination of Br⁻ completes the chain radical (Scheme 1). Earlier work focused on additions to relatively simple allyl bromides, Z = H, Ph, CO₂Et, and CN. We now expand on this theme to include methyl ester, pyrrolidine amide, and oxazolidine functional groups. Also, to explore the viability of developing this reaction into a stereoselective process, we studied additions of prochiral radicals (using ethyl benzene as our radical precursor) and α -methyl-substituted allyl bromides.

The mode of initiation of these reactions involves H-abstraction by the initiating radical (In[•]) from the starting alkylaromatic. Di-tbutylperoxide (DTBPO) has proven to be an especially effective initiator because ^tBuO[·] does not add readily to double bonds.

The results of this study are summarized in Table 1. Overall, yields were typically 50% or greater lending credence to the synthetic usefulness of this reaction. With allyl bromide (Z = H, entry a), the absence of an activating substituent leads to low yields and low reaction rates (only 33% yield after 94 h). However, when Z is a strong electron-withdrawing group (e.g., Z = CN, CO_2R), the reaction gave good yields over a short reaction time with both cumyl and benzyl radicals (entries j and k). Because of their affinity toward electrophilic substrates, alkyl radicals have been described as being nucleophilic.³

This reaction was expanded to include α -methyl-substituted allyl bromides where Z was either a methyl ester or a pyrrolidine

amide (Eq. 1). The yields for these reactions using toluene were 57% for the methyl ester (13 h) and 69% for the pyrrolidine amide (12 h). The use of ethyl benzene in an analogous reaction resulted in a complex mixture of products including some with rearranged carbon-carbon double bonds (Eq. 2).

$$\begin{array}{c} Z \\ H_3 \end{array} \xrightarrow{\text{Br}} \begin{array}{c} \text{DTBPO} \\ \text{PhCH}_3, \Delta \end{array} \xrightarrow{\text{CH}_3} \begin{array}{c} C \\ \text{CH}_3 \end{array}$$
(1)

Kinetic chain lengths were determined by comparing the rate of product formation with respect to the rate of initiator disappearance.⁴ These experiments were carried out in the presence of 1,2-epoxybutane as an HBr scavenger. The chain length data are summarized in Table 2.

$$\begin{array}{c} CO_2Me \\ H_3 \end{array} \xrightarrow{DTBPO} PhCH_2CH_3, \Delta \end{array}$$

$$\begin{array}{c} CH_3 \ CO_2Me \\ Ph + CH_3 \end{array} \xrightarrow{CH_3 \ CO_2Me} CH_3 \ CO_2Me \\ CH_3 \end{array} \xrightarrow{CH_3 \ CH_3 \ CH_3} + (2)$$

$$\begin{array}{c} CH_3 \ CH_3 \ CH_3 \\ Ph + CH_3 \end{array}$$

Relative rates of addition of PhCH₂ to the various allyl bromides were determined by competition experiments. The results of these studies are summarized in Table 3. These data are similar to those described by Giese, attributable to a β -effect, and demonstrate that the overall rate increases with the electron-withdrawing ability of

Corresponding author. Tel.: +1 813 253 3333; fax: +1 813 258 7881. E-mail addresses: jstruss@ut.edu (J.A. Struss), jtanko@vt.edu (J.M. Tanko).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.02.154

Scheme 1. Mechanism of radical-based allyl transfer reaction.

Table 1

Additions of benzyl radicals to substituted allyl bromides

$R^1 + R^2 + Br$	(<i>t</i> -BuO) ₂ 120 ⁰C,	$R^1 R^2 Z$
<u>A</u> <u>B</u>	1.1 eq. K ₂ CO ₃	

Entry	\mathbb{R}^1	\mathbb{R}^2	Z	A (mmol) ^a	B (mmol)	Time (h)	Yield (%)
a ^b	Н	Н	Н	47	0.69	94	33
b	Н	Н	Ph	47	0.72	93	82
с	Н	Н	Ph	2.8 ^d	0.72	93	24
d	CH_3	CH ₃	Ph	36	0.72	93	100
e ^c	CH_3	CH_3	Ph	1.4 ^d	0.72	93	66
f	Н	Н	CO_2Et	47	0.77	40	47
g	CH_3	CH ₃	CO_2Et	36	0.77	94	48
h	Н	Н	CO_2Me	190	3.0	3	63
i	Н	CH ₃	CO_2Me	160	3.0	3	57
j ^{b,c}	Н	Н	CN	38	0.77	2	66
k ^b	CH_3	CH ₃	CN	29	0.77	2	80
1	Н	Н	COPyr	190	3.0	4	72
m	Н	CH ₃	COPyr	160	3.0	5	66
n	Н	Н	Ox	140	2.2	8	53
0	Н	CH_3	Ox	120	2.2	10	59

^a All reactions were performed in neat toluene, ethyl benzene, or cumene using 20 mol % di-*tert*-butylperoxide as the initiator unless otherwise noted.

^b 1.1 equiv of 1,2-epoxybutane used as an HBr scavenger.

^c 20 mol % benzoyl peroxide used as an initiator at 80 °C.

^d In 5 mL benzene.

the Z substituent. Steric effects are evident by the diminished reactivity of α -methyl-substituted allyl bromides toward PhCH₂, and by the lower chain lengths observed for these allyl bromides (Table 2). A similar phenomenon regarding the steric α -effect has been previously reported.^{3c,5}

To summarize, this reaction is limited to substrates which have activating β -substituents (Z) and an unhindered α -carbon. Good yields are obtainable with α -methyl substrates at longer reaction times even though the chain-lengths for these compounds are shorter. However, only benzyl radical (PhCH₂) adds without producing complex product mixtures, in contrast to additions of the 1-phenylethyl radical (Eq. 2). Presumably, cumyl radical would behave similarly. Pyrrolidine amides and oxazolidinone substituents are suitable activating substituents, and provide the foundation for developing new stereoselective carbon–carbon bond-forming reactions via the use of chiral Lewis acids.⁶ Finally, the fact that this method does not require toxic metals such as mercury or tin for radical generation makes this reaction especially appealing from green chemistry standpoint.

Table 2

Initial chain length data for benzyl radical additions to various allyl bromides

-Z	Initial chain length (relative chain length)			
	$R^1 = R^2 = H$ $R^3 = H$	$R^1 = R^2 = H,$ $R^3 = CH_3$	$R^1 = CH_3$ $R^2 = R^3 = H$	$ \begin{array}{l} R^1 = R^2 = CH_3 \\ R^3 = H \end{array} $
н	10(1)	-	-	-
Ph	400 (40)	-	-	60
CO ₂ Et	800 (80)	-	-	60
CO ₂ Me	400 (40)	50 (5)	100	-
CN	700 (70)	-	-	400
COPyr	50 (5)	3.0 (0.3)	60	-
Ox	20 (2)	-	20	-

Table 3

Relative reactivities of various allyl bromides toward PhCH₂

Z Br,-Z=	k _{rel} (80 °C)	k _{rel} (120 ℃)
H Ph CO ₂ Me CO ₂ Et CN COPyr	0.01 0.59 - 1 1.6 -	- 0.95 1 - 0.02
Ox	-	0.01

Acknowledgment

Financial support from the National Science Foundation (CHE-0548129) is acknowledged and appreciated.

Supplementary data

General and detailed experimental procedures. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.02.154.

References and notes

- 1. Tanko, J. M.; Sadeghipour, M. Angew. Chem., Int. Ed. 1999, 38, 159.
- (a) Chuang, C. P.; Hart, D. J. J. Org. Chem. **1983**, 48, 1782; (b) Danishefsky, S.; Chackalamannil, S.; Uang, B. J. J. Org. Chem. **1982**, 47, 2231; (c) Ladlow, M.; Pattenden, G. Tetrahedron Lett. **1984**, 25, 4317; (d) Burke, S. D.; Fovare, W. B.; Arminsteadt, D. M. J. Org. Chem. **1982**, 47, 3348; (e) Geise, B.; Kretzschmar, G. Angew. Chem., Int. Ed. Engl. **1981**, 20, 965; (f) Huval, C. C.; Singleton, D. A. Tetrahedron Lett. **1993**, 34, 3041.
- (a) Geise, B.; Kretzschmar, G. Chem. Ber. 1983, 116, 3267; (b) Geise, B.; Meisner, J. Chem. Ber. 1981, 114, 2138; (c) Geise, B. Angew. Chem., Int. Ed. Engl. 1983, 22, 753.
- 4. The amount of ^tBuO produced was calculated based on the rate constant k = 1.72 \times 10⁻⁶ s⁻¹ at 120 °C.
- (a) Geise, B.; Meisner, J. Angew. Chem., Int. Ed. Engl. 1977, 10, 178; (b) Geise, B.; Lachhein, S. Angew. Chem., Int. Ed. Engl. 1981, 20, 967.
- For examples of chiral auxiliary controlled radical additions, see: Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical Reactions, 1st ed.; VCH: New York, NY, 1996. Chapter 5, p 178.